Integrated Port Time Control for Shipping Companies

Asyqar Prabowo Aji a1, Paulus Raga b2, Yosi Pahala c3*, Prasadja Ricardianto d4, Zaenal Abidin e5

a1 Institute of Transportation and Logistics Trisakti, Jl IPN No. 2, Cipinang Besar Selatan, Jakarta Timur, Indonesia
b2 asyqarprabowoaji@gmail.com, c3 paulus.raga0305@gmail.com, d4 yopahala@gmail.com, e5 ricardianto@gmail.com
*corresponding e-mail

This is an open access article under the terms of the CC-BY-NC license

ABSTRACT

As the busiest port in Indonesia, Tanjung Priok port has a hard time to achieve the target to maximize ship utility through operational cost savings. The purpose of this study is to determine the factors affecting Integrated Port Time (IPT) in order to reduce the shipping companies operating costs in Tanjung Priok Port, Jakarta. Controllable and uncontrollable IPT is influenced by five variables which are the availability of the docks, the shipping lane conditions, the document services, the guidance services, and the loading-unloading productivity. This study focuses on the factors that affect IPT in domestic area of Terminal 3 Tanjung Priok Port Jakarta in particular. It is related to how IPT could contribute to the efficiency of national companies operations in general if the duration is shortened. This study used Path Analysis method with a total sample of 70 people from the operational team and the crew of Temas shipping company. The results of the study prove that five variables mentioned have a positive and significant impact altogether on IPT of the ships operated by Temas shipping company in Tanjung Priok port in Jakarta. The findings are expected to be useful to cut down Temas shipping company’s operational cost and increase the ships utility.

Keywords: integrated port time, tanjung priok; dock availability, shipping lane condition.

A. Introduction

Temas Shipping is a privately owned cargo container shipping company that operates throughout Indonesia. With so many routes operated by several regions such as the Sumatra Region, Kalimantan Region, Sulawesi and Papua Region, and the Pendulum Region on the Temas Line, there are often quite a lot of ship queues which result in the accumulation of ships at ports, whilst Jakarta and Surabaya are the busiest ones with 43 calls for Jakarta and 40 calls for Surabaya. Another impact of the high IPT in Jakarta is the delay in goods arriving at the port of destination, which can result in complaints from customers. An efficient transportation system allows for increasing space and time utility. Indonesia has sea access from all trading systems, for this reason if ships experience delays during shipping activities, export and import activities will be hampered, which will have an impact on ship services (Gunawan, 2015).

Compared to air transportation and land transportation modes, sea transportation has significant advantages from economic and social aspects, including large volume and capacity, low cost for medium and long distances, and being part of a combined transport system (Lasse, 2018). International recognition for Indonesia as the largest archipelagic country in the world, really opens up opportunities to become a strong maritime country with a fleet that is not only able to meet domestic needs, but is competitive on a global scale at least serving exported and imported goods from and to Indonesia. Based on Indonesian laws and regulations regarding long-term development which state, among other things, that Indonesian goods are
transported by Indonesian ships (Lasse, 2017).

In an effort to support the government’s program, namely economic equality in Indonesia, Temas Line serves the Sea Toll Road, namely the T1, T11, and T17 routes and also serves the Papua Area route from 2018 until present. As time goes by Temas Line, which is now 32 years old, has become one of the companies that have 75 percent market share in Indonesia, supported by the number of vessels it has. Jakarta has a port or quay that operates 24 hours, as is the case with standard IPT, however, in reality it is very difficult to achieve the standard time. Many factors affect the high IPT rate in a port, both controllable and uncontrollable ones. The length of loading and unloading activities due to the lack of loading and unloading equipment at the port and the lack of maximum capability of the equipment owned are one of the causes of the high IPT rate. In addition, the readiness of the load also affects the length of time the ship stays at a port because the ship must operate with a standard load factor of at least 70 percent for the company to make a profit. If the cargo has not reached 70 percent, then the ship must dock in the ship’s berth area until the cargo exceeds or equals 70 percent. Another factor that cannot be controlled by the company is the large number of ships to be served, both the ship going in and out of the port. The waiting time for guiding ships and long delays, the temporarily state activities that must be prioritized, and the condition of the container field that has reached its maximum capacity further add to the long duration of IPT in ports.

Several problems relating to the deficiencies in the port operation have been identified from both controllable and uncontrollable factors. The controllable factors, encompasses; (1) The IPT target has not been achieved due to the existing operational standards, (2) The lack of loading and unloading equipment at the dock and (3) The requirement standard loading cargo to reach 70 percent. While, as to the uncontrollable, the identification includes: (1) The delay in ship departure, (2) The time utility that was not yet on target, (3) The number of ships queuing to dock, (4) The contemporary prioritized ship docking, (5) The full capacity of container yard due to the joining operation with other vessels, and (6) The long guidance waiting times. The following table exhibits the data of the number of ships staying at the port and the IPT at the Tanjung Priok port of Jakarta from the time arrival until the ship leaves the anchor location (Time Departure) during the period of 2020.

The Table 1 shows that many ships docking at ports exceed IPT standards. Several strategies to reduce the high number of IPT in ports, for example, are to consider the allocation of ships to berths, assignment of dock cranes to ships and the use of integrated computing (Meisel & Bierwirth, 2006). Several characteristics of the ship queuing and the factors that affect waiting

<table>
<thead>
<tr>
<th>Period</th>
<th>Total Call</th>
<th>Portstay (hour)</th>
<th>Standard (hour)</th>
<th>Target (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>32</td>
<td>55</td>
<td>24</td>
<td>44</td>
</tr>
<tr>
<td>February</td>
<td>39</td>
<td>66</td>
<td>24</td>
<td>36</td>
</tr>
<tr>
<td>March</td>
<td>42</td>
<td>42</td>
<td>24</td>
<td>57</td>
</tr>
<tr>
<td>April</td>
<td>38</td>
<td>61</td>
<td>24</td>
<td>39</td>
</tr>
<tr>
<td>May</td>
<td>40</td>
<td>51</td>
<td>24</td>
<td>47</td>
</tr>
<tr>
<td>June</td>
<td>40</td>
<td>52</td>
<td>24</td>
<td>46</td>
</tr>
<tr>
<td>July</td>
<td>41</td>
<td>37</td>
<td>24</td>
<td>65</td>
</tr>
<tr>
<td>August</td>
<td>43</td>
<td>51</td>
<td>24</td>
<td>47</td>
</tr>
<tr>
<td>September</td>
<td>38</td>
<td>49</td>
<td>24</td>
<td>49</td>
</tr>
<tr>
<td>October</td>
<td>42</td>
<td>42</td>
<td>24</td>
<td>57</td>
</tr>
<tr>
<td>November</td>
<td>32</td>
<td>42</td>
<td>24</td>
<td>57</td>
</tr>
<tr>
<td>December</td>
<td>38</td>
<td>40</td>
<td>24</td>
<td>60</td>
</tr>
</tbody>
</table>

Table 1 Vessel Call and Integrated Port Time
time for ships have been studied quite a lot in Indonesia, such as research conducted at the Port of Tanjung Perak, Surabaya (Perdana et al., 2018). In his research, Pratama et al., (2019) used a discrete simulation method with findings related to IPT savings, boat rental costs savings, and increased utility. Research by (Indriyati & Ardian, 2021) at Pertamina Port, Semarang shows the high waiting time at the port as one of the obstacles to IPT. The long waiting time includes the terminal time, marine time and, fuel distribution. In previous research Wibowo, (2010), revealed that the variables of the demand for guiding boats, the readiness of loading-unloading equipment, loading-unloading productivity at the dock, ship arrival time, document processing time had a significant influence on the ship waiting time.

The purpose of this study is to find out and analyze which variables mostly contribute to changes in the Integrated Port Time, as well as the impact that may follow as Temas Shipping lower its IPT level. Based on the review of several previous studies, this research differs from Wibowo’s research in the way that it has four variables including the demand for guiding boats, the readiness of loading and unloading equipment, loading and unloading productivity at the dock, and document processing time. There are differences that are not yet examined, namely the readiness of loading and unloading equipment, ship arrival time, and ship waiting time. Several previous studies also used different terminology, so the concept of the variable studied was also different.

Document service, like this and many more below that the administrative process and completeness of other supporting documents for ships to dock at a port (Suyono, 2007). The document service in this study is a document that must be completed by an agent or shipping company in terms of the ship’s docking process at the harbormaster’s office. The quality of document service according to Umagapi et al., (2016) plays an important role in waiting time for ships because when the process of incoming ship documents is faster and more efficient, then it will shorten its waiting time. Studies by found that administrative checks had been fulfilled but were hampered due to the physical inspection of ships that did not meet the requirements. Document services in the context include: document service procedures, employee performance and service facilities.

Guidance service, like this and many more below that a ship’s service to be guided by using a tug boat to dock so that the ship can move on safely, orderly, and quickly. The guidance service in this study is the pilotage of the ship when the ship arrives to dock and leave to sail safely, and quickly at Tanjung Priok Port. The work of guiding a ship doesn’t require just human resources but special skills for the services of anchoring, mooring, piloting tug and water vessels. Punctuality of berthing at the dock is an assessment of ship piloting services. The provision of guidance service facilities can affect the reduction of waiting time which in turn has an impact on reducing costs that have been detrimental to consumers (Andrianto et al., 2017). Another study by Purnomo & Ario, (2009) states that it is necessary to rejuvenate, add a tugboat fleet and rent a scouting fleet from the private sector to fulfill customer service. Research at the Tanjung Priok Port shows that guidance services and ship loading and unloading equipment facilities are not optimal (Hadi, 2010). In addition, research by Sesotyo, (2018) explains that a system is needed to assist tug guidance services such as notification of ship arrivals and calculation of tug guidance services.

Shipping lane is an area called line 1 waters, or the area for ships waiting to enter the dock, which has a function as a route for ships to enter or leave the port. The condition of the shipping lane is the condition of the lane that the ship can maneuver to dock safely and quickly at the port. The three dimensions are tides, ship traffic, and ship size. Research related to the conditions of the previous shipping lane by Suharjo & Suharyo, (2014), has been carried out at the East Surabaya Shipping Line, risk mitigation is carried out by implementing routine patrols and installing port lane signs, providing training...
to rescue people on board and securing the port area so that unauthorized parties cannot enter the port area. Meanwhile, in the West and East Surabaya shipping lanes, Ulfa, (2018) conducted monitoring of emergency conditions on ships with a system of software with an android application that was applied to water police mobile devices. The results of other studies Efrianto, (2019; Indrawan et al., 2017) show that the uneven depth in the shipping lane area makes incoming ships have to be more careful. In that port, the pool must be dug deeper and the shipping lane must be expanded. Another research at Nagan Port, Aceh Suhariyadi, (2016)) revealed that for port operational safety, the dock minimum depth is 12 meters at low tide.

Availability of dock is the readiness of the dock for ships to be docked with complete facilities so that ships can dock safely, orderly, and quickly. The availability of the wharf in this study is a condition where the pier to be docked by the ship is available properly, safely, and quickly to accommodate the ships that will dock at the port of Tanjung Priok. The three dimensions of the variables are the number of docks, the physical condition of the dock, and the dock facilities. The results of previous research by Selasdini et al., (2018), at the South dock of Batu Ampar Harbor Batam suggested that to overcome the lack of loading-unloading equipment the management may develop and increase equipment in the new development area. At the port of Samarinda, Aviva, (2010) proposed to expand the area of docking.

Productivity of loading and unloading is the number of containers that can be unloaded or loaded per ship within a certain time. The productivity of loading and unloading in this study is the speed or performance when the ship carries out loading and unloading activities at the port which is measured by the box ship per hour. In this study, loading and unloading productivity is the total score of the measurement obtained from the questionnaire on loading and unloading productivity indicated by workforce performance, loading-unloading equipment, and the availability of container yards.

Previous research by Vicrihadi et al., (2021) at Terminal 3, Tanjung Priok Port, concluded that the disruption of loading and unloading activities of containers will affect the length of time and greatly affect the operational efficiency of the ship. Meanwhile, another study at the Cigading Port, West Java, Afandi et al., (2021) found that there was an effect of loading and unloading productivity on satisfaction through mediation of port performance. In another research Sitorus & Nahry, (2016) with the application of the design of the container loading and unloading operational system at JICT and TTL, they proposed that land transportation system combined with magnetic technology and the proposed system is environmentally friendly practice that ensure the operation will work more safely. At the Berlian Surabaya dock, according to Gunawan & Sianto, (2017) the group of port workers, loading and unloading equipment, full empty ratio, total container weight, and loading and unloading process time are main predictors of loading and unloading productivity.

Integrated Port Time (IPT) is the time the ship berths in a port which is scored from the ship arriving at the berth area in a port until the ship departs from the anchored area in a port, in this context, the Tanjung Priok port, Jakarta. In this research, IPT indicators consist of waiting time to guide on boards, berthing time, and loading and unloading time using. Several studies related to IPT explain that psychological problems related to working time during voyages are shorter than the time staying in port (Oldenburg et al., 2020; Oldenburg & Jensen, 2019). Another problem is that the effect of short navigation during the length of stay in the port and port congestion is very visible on the bio-fouling and fuel consumption of ships on the way home (Tsugane et al., 2010).

H1 : Document Service (X1) contributes to Integrated Port Time (Y)
H2 : Guidance Service (X2) contributes to Integrated Port Time (Y)
H3 : Shipping Lane Conditions (X3)
Contribute to Integrated Port Time (Y)

H4: Dock Availability (X4) contributes to Integrated Port Time (Y)

H5: Loading and Unloading Productivity (X5) contributes to Integrated Port Time (Y)

H6: Document Services (X1), Guidance Services (X2), Shipping Lane Conditions (X3), Dock Availability (X4), Loading-Unloading Productivity (X5) simultaneously contribute to Integrated Port Time (Y).

We assume that Document Services (X1), Guidance Services (X2), Shipping Lane Conditions (X3), Dock availability (X4), Unloading Productivity (X5) contribute to Integrated Port Time (Y) and can lower the operational costs of national shipping companies in Indonesia.

B. Methods

This study uses the path analysis method with 70 samples of respondents from PT Temas Shipping as a shipping line operator, PT Temas Port as a loading and unloading company and ship crew from PT Temas Shipping, PT Pelindo operational employees, Port Authority, in Jakarta. Path analysis is used to analyze the pattern of relationships between variables with the aim of knowing the direct or indirect effect of a set of independent variables (exogenous) on the dependent variable (endogenous). Research was conducted in domestic Terminal 3 Tanjung Priok Port, Jakarta. The 70 respondents with less than five years of service experience were 43 percent, followed by respondents with more than five years experiences, which covered 34 percent, and finally respondents with more than 10 years of service experience, which was 23 percent. The description of the results of this study is the score of the questionnaire about all the variables.

Before testing, data was obtained by asking questions to operational employees and ship crews at PT. Shipping. While direct observation is related to clearance in and out the theme ship at the port of Tanjung Priok Jakarta. distributing questionnaires to the operational team and ship crew, at the central Temas and the Jakarta branch of Temas. The first step of testing the data obtained is the assumption test, including the validity test, and the reliability test, then followed up with the t test and F test. Several previous studies have used the path analysis method on shipping

![Figure 1 Research Design](https://example.com/f1.jpg)
C Results and Discussion

1. Description of Variables

A total of 33 respondents or 47.2 percent of 70 respondents stated that the Document Service at the harbormaster’s office when the ship was about to dock was very good. The process for the flow of ship docking documents is simple and employees at the harbormaster service office and port authorities are good at work, so that the document service has met the expectations of shipping companies and can lower the score of Integrated Port Time at the Tanjung Priok port in Jakarta.

A total of 28 respondents from 70 respondents or 40.1 percent cumulatively stated that the Guidance Service when the ship was about to dock was quite good. The guidance service has met the expectations of shipping companies so that it is able to shorten the Integrated Port Time at the Tanjung Priok port in Jakarta. However, the harbormaster must also accommodate all inputs from respondents in making improvements because there are still 40.1 percent of respondents saying that the guidance service when the ship will dock has not maximized the ship’s IPT at the Tanjung Priok port, Jakarta.

A total of 37 respondents or 52.8 percent of the 70 respondents stated that the condition of the shipping lanes through which the ship was going to dock was very good. The condition of shipping lanes has met the expectations of shipping companies, meaning that it can shorten the duration of IPT at the Tanjung Priok port in Jakarta. However, the harbormaster must also accommodate all inputs from respondents in making improvements because there are still 40.1 percent of respondents saying that the guidance service when the ship will dock has not maximized the ship’s IPT at the Tanjung Priok port, Jakarta.

A total of 40 respondents from 70 respondents or 57.1 percent cumulatively stated that the availability of docks for berths was very good. Based on this fact, it can be concluded that the availability of the dock has met the expectations of shipping companies, then it can reduce the score of IPT at the Tanjung Priok port in Jakarta. However, PT Pelindo and the Unloading Company (PBM) must also accommodate all input from respondents in making improvements because there are still 14.4 percent of respondents saying that the availability of the dock when the ship docks has not met expectations to maximize the Integrated Port Time at Tanjung Priok port, Jakarta.

A total of 40 respondents from 70 respondents or 57.1% cumulatively stated that the productivity of loading and unloading ships when docking was not quite good. The loading and unloading productivity has not met the expectations of the respondents because more than 50 percent, to be precise 57 percent of the 70 respondents stated that loading and unloading productivity was not good enough (on average). So that there is a need for improvements from loading and unloading companies to commit improvement in supporting the expectations of loading and unloading service users. The flow and placement of the container yard blocks are not appropriate and well structured, so in this case it is necessary to improve the port operator of PT PT Pelindo 2 and the loading and unloading company. PT Temas Line should also innovate and develop the performance of the container yard so that the flow and placement of container blocks can be well structured and aligned to the other supporting aspects.

2. Hypothesis testing

The R^2 value of 0.784 means that the diversity of data that can be explained by the model is 78.4 percent. Thus, the research model has a high predictive ability on the behavior of the dependent variable which is characterized by a high coefficient of determination which is
above 50 percent.

The F-Test of Loading-Unloading Productivity, Dock Availability, Document Services, Guidance Services, Shipping Lane Conditions to Integrated Port Time

From the F test, the Sig value is 0.000, where the Sig 0.000 value is less than 0.05, then the path analysis coefficient is significant. Thus, the independent variables have a significant effect altogether on the dependent variable.

Variable t-test: Loading and Unloading Productivity, Dock Availability, Document Services, Guidance Services, Shipping Lane Conditions to Simultaneous Integrated Port Time

The value of Sig = 0.000 is smaller than 0.05, then the path coefficient is significant. Thus, each independent variable contributes positively and significantly altogether to the dependent variable. The direct contribution of Document Services to IPT is indicated by the Beta value.

3. Path Analysis Test Results
Path Analysis results can be described simultaneously which explains the contribution of the independent variables to the dependent variable (Figure 2).

The document service variable contributes to IPT by 0.575 or 57.5%. The results of the linear regression of document services that contribute to IPT are 0.685 with a significance of 0.14. This means that the better the service when the Temas Shipping agent prepares and processes the docking documents at the harbormaster’s office, the faster the ship can dock. Thus, it can cut IPT. In order to optimize the capabilities, expertise, knowledge, and performance of document service officers at the harbormaster’s office and port authority, training should often be held to improve the quality of human resources at the harbormaster’s office and port authority. They must simplify the regulation of ship docking documents to make it more practical to improve performance and more innovative for the development of the Inaportnet system which is currently running well. This will eventually establish a one-stop service so that

Table 2 R Square X on Y Simultaneously

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.885*</td>
<td>.784</td>
<td>.767</td>
<td>1.287</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Loading-Unloading Productivity, Dock Availability, Document Service, Guidance Service, Shipping Lane Condition

b. Dependent Variable: Integrated Port Time

Table 3 Anova (F test) X on Y Simultaneously

<table>
<thead>
<tr>
<th>ANOVA</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Model</td>
<td>Sum of Squares</td>
<td>df</td>
<td>Mean Square</td>
<td>F</td>
</tr>
<tr>
<td>Regression</td>
<td>385.107</td>
<td>5</td>
<td>77.021</td>
<td>46.488</td>
<td>.000*</td>
</tr>
<tr>
<td>Residual</td>
<td>106.036</td>
<td>64</td>
<td>1.657</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>491.143</td>
<td>69</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Loading-Unloading Productivity, Dock Availability, Document Service, Guidance Service, Shipping Lane Condition

b. Dependent Variable: Integrated Port Time

*This is the star notation indicating significance at a certain level.
there is good coordination between port service users and interested stakeholders. The results of this study are in accordance with previous research conducted by (Haryadi, 2020) where document services have a positive effect on Integrated Port Time of the object researched.

The service integration variable contributes to IPT by 0.381 or 38.1%. The results of the linear regression of guidance services contribute to IPT of 0.467 with a significance of 0.000. This means that the better the service and expertise of ship guidance and the better the quality of tugboats to serve ships operated by PT Temas Shipping, the faster the process of getting in and out of ships to dock and automatically shortening the IPT.

In the guidance service variable, there needs to be an improvement in terms of the ability of the scout officers and the performance of the tugboats so that they can serve ships going in and out the dock safely, and quickly. The results of this study are in line with previous research conducted by (Andrianto et al., 2017; Perdana et al., 2018) where guidance services have a positive effect on IPT of the object researched.

The shipping lane conditions contributed to the IPT of 0.860 or 86.0%. The
The linear regression coefficient of shipping lane conditions is 0.919 with a significance value of 0.000. This means that the more smoothly and the less obstacles in the shipping lane when the ships move in and out of the dock, the faster the process of getting in and out of the ship from and to the dock. It will consequently reduce the IPT degree. Shipping lanes need to revitalize shipping lanes and port pools, apply port regulations correctly and maximize existing pilotage to anticipate an increase in ship visits in the future. The results of this study are in accordance with previous research conducted by (Perdana et al., 2018) where the condition of the shipping lane has a positive effect on IPT of the object researched.

The dock availability contributed to the IPT variable of 0.177 or 17.7%. The linear regression coefficient of dock availability to IPT is 0.227 with a significance of 0.005. This shows that the availability of the dock directly affects the length of the ship’s IPT in a port. If the dock is full or cannot accommodate the number of ships that will dock, the ship cannot immediately dock and must wait for the previous ship to complete loading and unloading activities to dock. On the other hand, if the dock is properly available and equipped with appropriate facilities in accordance with existing regulations, the ship can immediately dock safely and immediately. This can speed up the IPT performance. For this reason, it is necessary to add additional dock support facilities in accordance with port regulations, increase the number of docks to anticipate the increase in ship visits. The results of this study are in accordance with previous research conducted by (Perdana et al., 2018) where the availability of docks has a positive effect on IPT performance.

Loading and unloading productivity contributes to IPT by 0.343 or 34.3%. The linear regression of loading and unloading productivity to IPT is 0.270 with a significance of 0.000. This means that the better the loading and unloading productivity, the better the IPT level of the ships operated by Temas Shipping. Productivity of loading and unloading is the main activity carried out by ships when they are in a port. Based on the fact, loading and unloading activities must be made more effective and efficient while still prioritizing work safety and security. To increase loading and unloading productivity, it is necessary to prioritize the performance of the loading and unloading workforce (TKBM) and continue to maintain the loading and unloading equipment in order to achieve the box ship per-hour (BSH) target. While prioritizing work safety, the company must also manage the flow and placement of container blocks to reduce unwanted operational constraints and increase container capacity in the container yard. The results of this study are in accordance with previous research conducted by (Haryadi, 2020; Wibowo, 2010) where loading and unloading productivity has a positive effect on IPT performance. According to (Indriyati & Ardian, 2021) the greater waiting time at the port is one of the most obstacles to IPT.

The variables of document services, guidance services, shipping lane conditions, dock availability, loading and unloading productivity contribute simultaneously to IPT by 0.784 or 78.4%. The path coefficient of the variables is 0.784 with a significance of 0.000. This means that the better the performance of document service, integration services, shipping lane conditions, dock availability, Loading-unloading productivity, the more they will affect IPT. The results of this study are in line with previous research by Wibowo (2010), which shows that the independent variables -demand for guidance boats, the performance of loading and unloading equipment, loading and unloading productivity at the dock, ship arrival time and document processing time have an influence on waiting time of the ship.

By strengthening the IPT performance, Temas Shipping may enhance its operational efficiency, due to: (1) the less consumption of fuel while in port, (2) The lower fuel costs, (3) Other cost reduction, (4) Increasing the number of calls, (5) raising teus capacity, (6) Reducing the lead time for delivery of goods and (7) Efficient and effective loading and unloading time at the port, so that it can serve the next ship to dock.
D. Conclusion

The document service during the ship docking at the harbormaster’s office is perceived fairly good in performance while the process for the flow of ship docking is also simple. This finding may become one of the aspects to better the IPT performance. Guidance services at the Port of Tanjung Priok was perceived good and this will shorten the IPT. This variable has met the expectations of the shipping companies however, the harbormaster must also accommodate all inputs from respondents in making improvements because there are still quite a lot of respondents saying that it has not optimally met their expectations.

The performance of shipping flow was perceived good by the shipping companies and consequently, it lessens the time of port stay, but however, there are still not much of respondents saying that the condition of the shipping flow has not fully met their expectations to maximize the IPT at the port, then the harbormaster must work hard to make some improvements accordingly. The waiting time for ships to be served in or out of shipping lanes was perceived as fairly good, however, the ship guides and tow officers must work faster and more alert in serving ships that are going in and out of shipping lanes, but still prioritizing safety and security.

The availability of docks has met the expectations of shipping companies then it may lessen the duration of IPT, however, PT Pelindo and also the loading and unloading company (PBM) must also accommodate all inputs from respondents in making improvements because there are still not much of respondents respond unfavorably. The condition of docks is sturdy and safe for boats to dock on. It was perceived as quite good by the shipping companies, however, the port operator, PT Pelindo, must accommodate all feedbacks from respondents to continue improve the existing dock facilities to ensure the security and safety of port service users and to reduce Integrated Port Time to be effective and efficient.

The loading and unloading productivity has not met the expectations of the respondents because 57 percent of the 70 respondents stated that loading and unloading productivity was not good enough. So that there is a need for improvements in order to support its productivity. The flow and placement of the container yard blocks are not appropriate and well structured, so in this case there needs to be improvements from both parties. PT Pelindo as the port operator and Temas Port as the loading-unloading company should work hand in hand to make some innovation to develop the container yard so that the flow and placement of blocks containers can be well structured and arranged properly. The duration of loading and unloading activities has not been in accordance with the ship’s mooring plan. Respondents have just perceived it with only good enough criteria, so there needs to make some improvements from port operators and the loading-unloading company.

E. References

Shu, Y. Q., Daemen, W., Ligteringen, H., &

